Sains Malaysiana 54(9)(2025): 2171-2184
http://doi.org/10.17576/jsm-2025-5409-06
Tinjauan tentang Peranan Hidrokoloid Berbeza sebagai Bahan Tambahan Makanan dalam Kestabilan Jangka Hayat Mayonis
(A Review on the Role of Different
Hydrocolloids as Food Additives in the Shelf Life
Stability of Mayonnaise)
ZHI YIN TER1,2*,
WAN AIDA WAN MUSTAPHA1,2 & SENG JOE LIM1,2
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Innovation Centre for Confectionery Technology (MANIS), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 20 January 2025/Accepted: 22 July
2025
Abstrak
Mayonis ialah emulsi minyak-dalam-air yang digunakan secara meluas sebagai bahan perasa di seluruh dunia. Kestabilan mayonis, terutamanya mayonis rendah lemak dan mayonis vegan, sering dikaitkan dengan isu teknikal seperti ketidakstabilan emulsi yang boleh mengehadkan jangka hayat produk. Hidrokoloid muncul sebagai penyelesaian kepada cabaran ini berikutan keupayaannya untuk meningkatkan kestabilan emulsi produk mayonis dengan menghalang pemisahan fasa, pengelompokan serta ketidakstabilan emulsi yang lain.
Dalam tinjauan ini, peranan pelbagai hidrokoloid termasuk gam xantan, gam guar, kanji, selulosa dan gam Arab yang biasa digunakan dalam produk mayonis telah dibincangkan. Keupayaan hidrokoloid untuk bertindak sebagai agen penstabil sterik dalam mekanisme penstabilan emulsi mayonis telah dijelaskan. Kesan penggunaan hidrokoloid ini terhadap kestabilan jangka hayat dan kualiti produk mayonis turut dihuraikan. Penemuan yang dibincangkan dalam kertas ini menyerlahkan bahawa penambahan hidrokoloid atau gabungannya dapat meningkatkan kestabilan produk mayonis dan memanjangkan jangka hayatnya. Tinjauan ini memberikan gambaran tentang peranan hidrokoloid yang berbeza dalam kestabilan jangka hayat mayonis untuk menggalakkan hasil yang lebih berkualiti dan pilihan produk dengan jangka hayat yang lebih panjang dalam industri makanan.
Kata kunci: Emulsi minyak dalam air; hidrokoloid; jangka hayat; kestabilan emulsi; mayonis
Abstract
Mayonnaise is an
oil-in-water emulsion that is widely used as a condiment around the world. The
stability of mayonnaise, particularly low-fat and vegan mayonnaise, is often
associated with technical issues such as emulsion instability, which can limit
the shelf life of the product. Hydrocolloids have emerged as solutions to these
challenges due to their ability to improve the emulsion stability of the
mayonnaise products by preventing phase separation, flocculation, and other
forms of emulsion instability. This review discusses the role of various
hydrocolloids, including xantan gum, guar gum,
starch, cellulose, and Arabic gum, which are commonly used in mayonnaise
products. The ability of hydrocolloids to act as steric stabilising agents in
the stabilisation mechanism of mayonnaise emulsions is explained. The effect of
these hydrocolloids on the shelf life stability and
quality of mayonnaise products is also elaborated. The findings discussed in
this article highlight that the addition of hydrocolloids or their combinations
can improve the stability of mayonnaise products and extend their shelf life.
This review provides insight into the role of different hydrocolloids in the shelf life stability of mayonnaise, promoting higher quality
outcomes and longer shelf life options for products in
the food industry.
Keywords: Emulsion stability; hydrocolloid;
mayonnaise; oil-in-water emulsion; shelf life
references
Aalami, M.,
Rahbari, M., Ahmed, S.A., Mahoonak, A.S., Kashaninejad, M. & Hassanzadeh, H. 2023. Formulation of
functional mayonnaise with defatted wheat germ flour as egg yolk substitute:
Rheological, textural and stability analyses. Korean Journal of Food
Preservation 30(3): 405-418.
Abd Rashed, A., Md Noh, M.F., Mustafa Khalid,
N., Ab Rahman, N. `Izzah, Tasirin, A., Wan Omar, W.S., Mohd Nawi, M.N., Jamilan, M.A. & Selamat, R. 2017. The nutritional
composition of mayonnaise and salad dressing in the Malaysian market. Sains Malaysiana 46(1): 139-147.
Akiyama, Y., Eda, S. & Katō, K. 1984.
Gum arabic is a kind of arabinogalactan–protein. Agricultural
and Biological Chemistry 48(1): 235-237.
Ali, M.R. & EL Said, R.M. 2020. Assessment
of the potential of Arabic gum as an antimicrobial and antioxidant agent in
developing vegan “egg‐free” mayonnaise. Journal of Food Safety 40(2): e12771.
Al-Sayed, H., Rasmy, N., Rizk, I. & Yousef,
E. 2012. Functional properties of some fat-replacers and their uses in
preparation of reduced-fat mayonnaise. World Journal of Dairy & Food
Science 7(1): 109-119.
Ariizumi, M.,
Kubo, M., Handa, A., Hayakawa, T., Matsumiya, K.
& Matsumura, Y. 2017. Influence of processing factors on the stability of
model mayonnaise with whole egg during long-term storage. Bioscience,
Biotechnology, and Biochemistry 81(4): 803-811.
Aryanti, N., Widiasa, I.N. & Susanto, H. 2019. Ultrafiltration of
oil-in-water emulsion stabilized with surfactants. IOP Conference Series:
Materials Science and Engineering 620(1): 012014.
Ashwini, A., Jyotsna, R. & Indrani, D.
2009. Effect of hydrocolloids and emulsifiers on the rheological,
microstructural and quality characteristics of eggless cake. Food
Hydrocolloids 23(3): 700-707.
Babic, J., Subaric,
D., Ackar, D., Kopjar, M.
& Tiban, N. 2009. Acetylation and
characterisation of corn starch. Journal of Food Science and Technology 46: 423–426.
Bhat, I.M., Wani, S.M., Mir, S.A. &
Masoodi, F.A. 2022. Advances in xanthan gum production, modifications and its
applications. Biocatalysis and Agricultural Biotechnology 42: 102328.
Boland, M. 2011. Whey protein. Dlm. Handbook of Food Proteins, disunting oleh Phillips, G.O. & Williams, P.A. Cambridge: Elsevier. hlm. 20-51.
Bratu, M.G. & Popescu, E.C. 2016. Study on
the use of thickeners for obtaining low fat mayonnaises. Annals: Food
Science and Technology 17(2): 289-292.
Burey, P., Bhandari, B.R., Howes, T. &
Gidley, M.J. 2008. Hydrocolloid gel particles: Formation, characterization, and
application. Critical Reviews in Food Science and Nutrition 48(5):
361-377.
Campos, J.M., Stamford, T.L.M., Rufino, R.D.,
Luna, J.M., Stamford, T.C.M. & Sarubbo, L.A. 2015. Formulation of
mayonnaise with the addition of a bioemulsifier isolated from Candida utilis. Toxicology Reports 24(2):
1164-1170.
Carrillo, A.R. & Kokini,
J.L. 1988. Effect of egg yolk and egg yolk + salt on rheological properties and
particle size distribution of model oil‐in‐ water salad dressing
emulsions. Journal of Food Science 53(5): 1352-1354.
Chetana, R., Bhavana, K.P., Babylatha,
R., Geetha, V. & Suresh Kumar, G. 2019. Studies on eggless mayonnaise from
rice bran and sesame oils. Journal of Food Science and Technology 56(6):
3117-3125.
Chirife, J.,
Vigo, M., Gomez, R. & Favetto, G.J. 1989. Water
activity and chemical composition of mayonnaises. Journal of Food Science 54(6): 1658-1659.
Chivero, P., Gohtani, S., Yoshii, H. & Nakamura, A. 2016. Assessment
of soy soluble polysaccharide, gum arabic and
OSA-Starch as emulsifiers for mayonnaise-like emulsions. LWT - Food Science
and Technology 69: 59-66.
Choublab, P.
& Winuprasith. 2018. Storage stability of
mayonnaise using mangosteen nanofibrillated cellulose. Journal of Food Science and Agricultural Technology 4: 59-66.
Corrigan, V., Hedderley, D. & Harvey, W.
2012. Modeling the shelf life of fruit-filled snack
bars using survival analysis and sensory profiling techniques. Journal of
Sensory Studies 27(6): 403-416.
de Menezes, R.C.F., de Carvalho Gomes, Q.C., de
Almeida, B.S., de Matos, M.F.R. & Pinto, L.C. 2022. Plant-based mayonnaise:
Trending ingredients for innovative products. International Journal of
Gastronomy and Food Science 30: 100599.
de Sousa Costa, L.A., Inomata Campos, M.,
Izabel Druzian, J., de Oliveira, A.M. & de Oliveira Junior, E.N. 2014.
Biosynthesis of xanthan gum from fermenting shrimp shell: Yield and apparent
viscosity. International Journal of Polymer Science 2014: 273650.
Dickinson, E. 2018. Hydrocolloids acting as
emulsifying agents - How do they do it? Food Hydrocolloids 78: 2-14.
Dickinson, E. 2009. Hydrocolloids and emulsion
stability. Dlm. Handbook of Hydrocolloids, Edisi ke-2. Woodhead Publishing Series in Food Science,
Technology and Nutrition. hlm. 23-49.
Dickinson, E. 2003. Hydrocolloids at interfaces
and the influence on the properties of dispersed systems. Food Hydrocolloids 17(1): 25-39.
Duncan, S.E. 2008. Fat: Mayonnaise. Dlm. Food Processing: Principle and Application, disunting oleh Smith, J.S. & Hui, Y.H. Lowa: John Wiley
& Sons, Inc. hlm. 329-341.
Esfarjani, F., Khoshtinat, K., Zargaraan, A.,
Mohammadi‐Nasrabadi, F., Salmani, Y., Saghafi,
Z., Hosseini, H. & Bahmaei, M. 2019. Evaluating
the rancidity and quality of discarded oils in fast food restaurants. Food
Science & Nutrition 7(7): 2302-2311.
Fauziah, C.I., Zaibunnisa,
A.H., Osman, H. & Wan Aida, W.M. 2016. Physicochemical analysis of
cholesterol-reduced egg yolk powder and its application in mayonnaise. International
Food Research Journal 23(2): 575-582.
Gaikwad, M.P., Syed, H.M. & Shinde, D.D.
2017. To study the physico chemical properties of
flavoured mayonnaise. Journal of Pharmacognosy and Phytochemistry 6(5):
6-9.
Ghazaei, S.,
Mizani, M., Piravi-Vanak, Z. & Alimi, M. 2015.
Particle size and cholesterol content of a mayonnaise formulated by
OSA-modified potato starch. Food Science and Technology (Campinas) 35(1): 150-156.
Gils, P.S., Ray, D. & Sahoo, P.K. 2010.
Designing of silver nanoparticles in gum arabic based
semi-IPN hydrogel. International Journal of Biological Macromolecules 46(2): 237-244.
Glicksman, M. 2019. Background and
classification. Food Hydrocolloids. Boca Raton: CRC Press.
Gokoglu, N.
2019. Novel natural food preservatives and applications in seafood
preservation: A review. Journal of the Science of Food and Agriculture 99(5): 2068-2077.
Golchoobi, L.,
Alimi, M., Shokoohi, S. & Yousefi, H. 2016.
Interaction between nanofibrillated cellulose with
guar gum and carboxy methyl cellulose in low-fat mayonnaise. Journal of
Texture Studies 47(5): 403-412.
Goodarzi, F. & Zendehboudi,
S. 2019. Effects of salt and surfactant on interfacial characteristics of
water/oil systems: Molecular dynamic simulations and dissipative particle
dynamics. Industrial & Engineering Chemistry Research 58(20):
8817-8834.
Haniff, M., Yahaya, S.A., Aziz, N.S., Wan
Mustapha, W.A., Sofian‐Seng, N., Rahman, H.A., Mohd Razali, N.S. &
Lim, S.J. 2020. Development of carotenoid-rich mayonnaise using carotino oil. Journal of Food Processing and
Preservation 44(9): e14688.
Hashemi, M., Aminlari, M., Forouzan, M.,
Moghimi, E., Tavana, M., Shekarforoush, S. & Mohammadifar, M. 2018. Production and application of
lysozyme-gum arabic conjugate in mayonnaise as a
natural preservative and emulsifier. Polish Journal of Food and Nutrition
Sciences 68(1): 33-43.
Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia,
K.M. & Akhtar, N. 2018. Recent advances on polysaccharides, lipids and
protein based edible films and coatings: A review. International Journal of
Biological Macromolecules 109: 1095-1107.
Hassan, N.M.K. & Abou-Sreea,
N.A. 2006. Risk assessment of Escherichia coli, Salmonella
typhimurium, and Listeria monocytogenes contamination in commercial
reduced calorie mayonnaise. Assiut Veterinary Medical Journal 52(109):
79-92.
Heggset, E.B., Aaen, R., Veslum,
T., Henriksson, M., Simon, S. & Syverud, K. 2020. Cellulose nanofibrils as
rheology modifier in mayonnaise - A pilot scale demonstration. Food
Hydrocolloids 108(2): 106084.
Jadav, M., Pooja, D., Adams, D.J. & Kulhari, H. 2023. Advances in xanthan gum-based systems for
the delivery of therapeutic agents. Pharmaceutics 15(2): 402.
Juszczak, L., Fortuna, T. & Kośla, A. 2003. Sensory and rheological properties of
Polish commercial mayonnaise. Food/Nahrung 47(4): 232-235.
Kang, K.S. & Pettitt, D.J. 1993. Xanthan, gellan, welan, and rhamsan. Dlm. Industrial Gums:
Polysaccharides and Their Derivatives, disunting oleh Whistler, R.L. & BeMiller, J.N. New York: Academic Press. hlm. 341-397.
Karupaiah, T., Chuah, K.A., Chinna, K.,
Matsuoka, R., Masuda, Y., Sundram, K. & Sugano, M. 2016. Comparing effects
of soybean oil- and palm olein-based mayonnaise consumption on the plasma lipid
and lipoprotein profiles in human subjects: A double-blind randomized
controlled trial with cross-over design. Lipids in Health and Disease 15(1): 131.
Kementerian Kesihatan Malaysia. 1985. Peraturan-Peraturan Makanan 1985. Petaling Jaya: International Law Book
Service.
Lee, I., Lee, S., Lee, N. & Ko, S. 2013.
Reduced-fat mayonnaise formulated with gelatinized rice starch and xanthan gum. Cereal Chemistry 90(1): 29-34.
Lewis, M.J. & Heppel, N.J. 2000. Continues
thermal processing of foods, pasteurization and UHT sterilization. Gaitersburg: Aspen Publisher.
Mandala, I.G., Savvas, T.P. & Kostaropoulos, A.E. 2004. Xanthan and locust bean gum
influence on the rheology and structure of a white model-sauce. Journal of
Food Engineering 64(3): 335-342.
Maszewska, M., Florowska, A., Dłużewska,
E., Wroniak, M., Marciniak-Lukasiak, K. & Żbikowska, A. 2018. Oxidative stability of selected
edible oils. Molecules 23(7): 1746.
Mirzanajafi-Zanjani, M., Yousefi, M. &
Ehsani, A. 2019. Challenges and approaches for production of a healthy and
functional mayonnaise sauce. Food Science and Nutrition 7(8): 2471-2484.
Mortensen, A., Aguilar, F., Crebelli, R., Di
Domenico, A., Dusemund, B., Frutos, M.J., Galtier,
P., Gott, D., Gundert‐Remy, U., Lambré, C.,
Leblanc, J., Lindtner, O., Moldeus, P., Mosesso, P., Parent‐Massin, D.,
Oskarsson, A., Stankovic, I., Waalkens‐Berendsen,
I., Wright, M., Younes, M., Tobback, P., Horvath, Z., Tasiopoulou, S. & Woutersen,
R.A. 2017. Re‐evaluation of oxidised starch (E 1404), monostarch phosphate (E 1410), distarch phosphate (E 1412), phosphated distarch phosphate (E
1413), acetylated distarch phosphate (E 1414),
acetylated starch (E 1420), acetylated distarch adipate (E 1422), hydrox. EFSA Journal 15(10):
e04911.
Mozafari, H.R.,
Hosseini, E., Hojjatoleslamy, M., Mohebbi, G.H. &
Jannati, N. 2017. Optimization low-fat and low cholesterol mayonnaise
production by central composite design. Journal of Food Science and
Technology 54(3): 591-600.
Mudgil, D.,
Barak, S. & Khatkar, B.S. 2014. Guar gum:
Processing, properties and food applications-A Review. J. Food Sci. Technol. 51(3): 409-418.
Nateghi, L., Roohinejad, S., Totosaus, A., Mirhosseini, H., Shuhaimi, M., Meimandipour, A., Omidizadeh, A.
& Manap, M.Y.A. 2012. Optimization of textural properties and formulation
of reduced fat Cheddar cheeses containing fat replacers. Journal of Food,
Agriculture and Environment 10(2): 46-54.
Nikzade, V.,
Tehrani, M.M. & Saadatmand-Tarzjan, M. 2012.
Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using
soy milk and some stabilizer by a mixture design approach. Food
Hydrocolloids 28(2): 344-352.
Palma, M., Guerreiro, J.F. & Sá-Correia, I.
2018. Adaptive response and tolerance to acetic acid in Saccharomyces
cerevisiae and Zygosaccharomyces bailii: A
physiological genomics perspective. Frontiers in Microbiology 9: 274.
Patel, J., Maji, B., Moorthy, N.S.H.N. &
Maiti, S. 2020. Xanthan gum derivatives: Review of synthesis, properties and
diverse applications. RSC Advances 10(45): 27103-27136.
Perrechil, F.d-A., Santana, R.de-C., Fasolin, L.H., da Silva, C.A.S. & da Cunha, R.L. 2010.
Rheological and structural evaluations of commercial italian salad dressings. Ciência e Tecnologia de Alimentos 30(2): 477-482.
Petri, D.F.S. 2015. Xanthan gum: A versatile
biopolymer for biomedical and technological applications. Journal of Applied
Polymer Science 132(23): 42035.
Prayitno, C.P.,
Wijaya, A., Pratama, F. & Yanuriati, A. 2022. Low
fat premixed mayonnaise block used OSA-corn starch as egg yolk replacer plus
corn starch binding agent. Jurnal Teknologi dan Industri Pangan 33(1): 21-27.
Puligundla, P.,
Cho, Y.H. & Lee, Y.T. 2015. Physicochemical and sensory properties of
reduced-fat mayonnaise formulations prepared with rice starch and starch-gum
mixtures. Emirates Journal of Food and Agriculture 27(6): 463-468.
Quintana, S.E., Torregroza-Fuentes, E. & García Zapateiro, L.A. 2022.
Development of dressing-type emulsion with hydrocolloids from butternut squash
seed: Effect of additives on emulsion stability. Gels 8(4): 209.
Randall, R.C., Phillips, G.O. & Williams,
P.A. 1988. The role of the proteinaceous component on the emulsifying
properties of gum arabic. Food Hydrocolloids 2(2): 131-140.
Rosland Abel, S.E., Yusof, Y.A., Chin, N.L.,
Chang, L.S., Ghazali, H.M., Ghani, M.A. & Ishak, I. 2020. The effect of
particle size on the physical properties of Arabic gum powder. Journal of
Food Process Engineering 43(4): e13368.
Sackett, L., Pestka, J. & Gisslen, W. 2015. Professional Grade Manger: A
Comprehensive Guide to Cold Food Preparation. Edisi ke-1. Hoboken: John Wiley & Sons, Inc.
Sagdic, O., Tornuk, F., Karasu, S., Durak, M.Z. & Arici, M. 2016.
Microbial ecology of mayonnaise, margarine, and sauces. Dlm. Quantitative Microbiology in Food Processing - Modeling the Microbial Ecology, Edisi 1, disunting oleh Sant’Ana, A.d-S.
Hoboken: John Wiley & Sons, Inc. hlm. 519-532.
Saha, D. & Bhattacharya, S. 2010.
Hydrocolloids as thickening and gelling agents in food: A critical review. Journal
of Food Science and Technology 47(6): 587-597.
Ševelová, M. & Golian, J. 2019. Application
of natural substances to reduce pH value of egg-based mayonnaise products. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality 119(2):
110-123.
Shafiei, M., Kazemzadeh, Y., Shirazy, G.M. & Riazi, M. 2022. Evaluating the role of
salts on emulsion properties during water-based enhanced oil recovery: Ion
type, concentration, and water content. Journal of Molecular Liquids 364: 120028.
Sharma, P., Sharma, S., Ramakrishna, G.,
Srivastava, H. & Gaikwad, K. 2022. A comprehensive review on leguminous
galactomannans: Structural analysis, functional properties, biosynthesis
process and industrial applications. Critical Reviews in Food Science and
Nutrition 62(2): 443-465.
Sirison, J., Rirermwong, A., Tanwisuit, N.
& Meaksan, T. 2017. Salad cream formulated with
tofu and coconut oil. British Food Journal 119(10): 2194-2202.
Smittle, R.B. 2000. Microbiological safety of
mayonnaise, salad dressings, and sauces produced in the United States: A
review. Journal of Food Protection 63(8): 1144-1153.
Smittle, R.B. 1977. Microbiology of mayonnaise
and salad dressing: A review. Journal of Food Protection 40(6): 415-422.
Sokhal, K.S., Dasaroju, G. & Bulasara, V.K.
2019. Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag
reduction percentage in water/oil flow. Vacuum 159: 247-253.
Su, H., Lien, C., Lee, T. & Ho, J. 2010.
Development of low‐fat mayonnaise containing polysaccharide gums as
functional ingredients. Journal of the Science of Food and Agriculture 90(5): 806-812.
Tahmouzi, S., Meftahizadeh, H., Eyshi, S., Mahmoudzadeh, A., Alizadeh, B., Mollakhalili‐Meybodi,
N. & Hatami, M. 2023. Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food
Science & Nutrition 11(9): 4869-4897.
Taslikh, M.,
Mollakhalili-Meybodi, N., Alizadeh, A.M., Mousavi, M.M., Nayebzadeh, K. & Mortazavian, A.M. 2022. Mayonnaise main ingredients
influence on its structure as an emulsion. Journal of Food Science and
Technology 59(6): 2108-2116.
USDA. 2024. Mayonnaise, regular. https://fdc.nal.usda.gov/food-details/2710204/nutrients. Diakses pada 23 Mei 2025.
Vandevelde, M.C. & Fenyo,
J.C. 1985. Macromolecular distribution of Acacia senegal gum (gum arabic) by size-exclusion chromatography. Carbohydrate
Polymers 5(4): 251-273.
Vernon-Carter, E.J. & Sherman, P. 1981.
Rheological properties and applications of mesquite tree (prosopis juliflora) gum 4. Rheological properties of mesquite
gum films at the oil-water interface. Journal of Dispersion Science and
Technology 2(4): 399-413.
Wang, Q., Ellis, P.R. & Ross-Murphy, S.B.
2000. The stability of guar gum in an aqueous system under acidic conditions. Food
Hydrocolloids 14(2): 129-134.
Wiguna, B., Kahfi, J., Aji, G.K., Rachman, D., Sofian Nasori, A., Muhamaludin, M., Maryana, E., Atmaji,
P., Taniwiryono, D., Purwanto, W. & Susetyo, I.B. 2023. The influence of virgin red palm oil on
the physical and textural properties of various vegetablefull-fat
mayonnaise. Sains Malaysiana 52(10):
2843-2854.
Wustenberg, T. 2015. General overview of food
hydrocolloids. Cellulose and Cellulose Derivatives in the Food Industry:
Fundamentals and Application. Edisi 1, disunting oleh Wüstenberg, T.
Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA.
Yang, S., Hu, W., Qiao, S., Song, W. & Tan,
W. 2025. Advances in processing techniques and determinants of sweet potato
starch gelatinization. Foods 14(4): 545.
Yao, X., Xu, Q., Tian, D., Wang, N., Fang, Y.,
Deng, Z., Phillips, G.O. & Lu, J. 2013. Physical and chemical stability of
gum Arabic-stabilized conjugated linoleic acid oil-in-water emulsions. Journal
of Agricultural and Food Chemistry 61(19): 4639-4645.
Yashin, A., Yashin, Y., Xia, X. & Nemzer,
B. 2017. Antioxidant activity of spices and their impact on human health: A
review. Antioxidants 6(3): 70.
Zeece, M.
2020. Carbohydrates. Dlm. Introduction to the
Chemistry of Food. Cambridge: Academic Press. Hlm.
81-215.
*Corresponding author; email: zhiyin@ukm.edu.my